
Efficient and Robust Nonlocal Means

Denoising of

MR Data Based on Salient Features Matching

Antonio Tristán-Vega1 Verónica Garćıa-Pérez2
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Abstract

The Nonlocal Means (NLM) filter has become a popular approach for denoising

medical images due to its excellent performance. However, its heavy computational

load has been an important shortcoming preventing its use. NLM works by averaging

pixels in nonlocal vicinities, weighting them depending on their similarity with the

pixel of interest. This similarity is assessed based on the squared difference between

corresponding pixels inside local patches centered at the locations compared. Our

proposal is to reduce the computational load of this comparison by checking only

a subset of salient features associated to the pixels, which suffice to estimate the

actual difference as computed in the original NLM approach. The speedup achieved

with respect to the original implementation is over one order of magnitude, and,

when compared to more recent NLM improvements for MRI denoising, our method

is nearly twice as fast. At the same time, we evidence from both synthetic and in

vivo experiments that computing of appropriate salient features make the estima-

tion of NLM weights more robust to noise. Consequently, we are able to improve
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the outcomes achieved with recent state of the art techniques for a wide range of

realistic Signal-to-Noise Ratio scenarios like diffusion MRI. Finally, the statistical

characterization of the features computed allows to get rid of some of the heuristics

commonly used for parameter tuning.
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1 Introduction1

Denoising of medical images is an important and rather challenging task, due2

to the peculiarities of the noise acquired by imaging sensors in UltraSounds3

(US), Computer Tomography (CT), or, of course, Magnetic Resonance Images4

(MRI) [1]. A number of filtering techniques have appeared in the literature5

including anisotropic diffusion [2], wavelets [3], and many others [1]. Among6

these solutions, the Nonlocal Means (NLM) first described in [4] is lately7

gaining an increasing popularity due to its excellent performance. NLM is a8

nonlinear filter based on a Weighted Average (WA) of pixels inside a search9

window which is relatively large compared to traditional neighborhood tech-10

niques, hence the term nonlocal. To preserve the structures of the image, the11

pixels are weighted according to their similarity with the pixel of interest, be-12

ing the agreement measured as the Mean Squared Difference (MSD) between13

patches surrounding the pixels under comparison.14

NLM has been proven optimal for Gaussian additive and multiplicative noise15

in [4]. Although the nature of disturbances may differ from Gaussian in some16

imaging modalities inducing a certain bias [5], NLM has been successfully17

adapted to US [6], MRI [7,8], and diffusion MRI [9–11]. In these cases, some18

modified schemes have to be introduced to cope with the particular statistics19
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of noise [7,12] or the particular structure of data [10,13].20

Some other approaches have been intended to generalize NLM to higher order21

models [14], or to perform subband denoising in wavelet decompositions [8,15,16],22

while other works aim to find optimal values for the parameters of NLM [7,17].23

In all these cases, the main drawback of NLM is the need for very inten-24

sive computations due to the reckoning of the squared distance between the25

comparison patches. For this reason, some alternative techniques have been26

proposed in the literature to speedup the computation of nonlocal averages,27

both for textured [18] or non-textured [19] images. They are based on diverse28

methodologies related to the one here presented to some degree, and hence29

they are further discussed in the next section.30

In this paper we propose a method to heavily accelerate the calculation of31

patch distances, and hence of NLM, by considering only the difference between32

salient features associated to the pixels to be weighted. In comparison to33

other related proposals, our technique shows a number of key advantages that34

are tested over typical MRI data sets: first, our calculation preserves the35

statistical characterization of patches in the original NLM, and therefore its36

optimality properties. Second, this characterization is local, so that we obtain37

an adaptive behavior. Third, salient features are computed for all pixels, so38

the acceleration is achieved for all patches: we are able to accomplish a net39

and predictable speedup regardless on the input Signal-to-Noise Ratio (SNR).40

Finally, these features are robustly computed translating in a more accurate41

estimate of weights, and thus in a notably improved filtering performance42

in most of cases. The relevance of the contributions previously discussed will43

become clear from the comparison with the state of the art techniques analyzed44
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hereafter.45

2 Background46

2.1 Nonlocal Means-based denoising47

In the standard formulation, u(xi) (or ui) is the gray level of the pixel at

position xi, and the filtered output is computed as [4]:

û(xi) =
∑

xj∈Ωi

w(xi, xj)u(xj), (1)

where Ωi is a large search window centered at pixel xi (in the original des-

cription of the algorithm, Ωi is indeed the entire image) and w(xi, xj) is the

weight assigned to pixel xj with respect to pixel xi, according to the similarity

between two patches Ni and Nj centered at xi and xj, respectively:

w(xi, xj) =
1

Zi

exp

(
−d(xi, xj)

h2

)
; d(xi, xj) =

1

N
‖u(Ni)− u(Nj)‖2

2, (2)

where Zi is a normalizing constant so that
∑

xj
w(xi, xj) = 1, and u(Ni)48

denotes an N × 1 vector with all the values u(xj) at the pixels xj ∈ Ni. The49

parameter h has a clear statistical meaning: it has to be proportional to the50

expected value of the distance between patches, E{d(xi, xj)}, and hence it is51

related to the noise power of the image, σ2. Typically, it is set to h2 = β2σ2, for52

β ∈ [0.8, 1.2] [7]. It is therefore necessary to correctly estimate E{d(xi, xj)}: if53

it is overestimated, NLM produces over-smoothing of the structures of interest.54

If it is underestimated, NLM is not able to properly remove the noise in the55

image.56

From eqs. (1) and (2), it is easy to understand the enormous computational57

4



load of NLM: assume that Ωi (resp. Ni) is an n-dimensional square window58

of radius M (resp. B). The WA includes all pixels in the search window Ωi,59

and hence (2M + 1)n weights have to be computed. The calculation of each60

of them requires the evaluation of eq. (2), so that the norm of a vector of61

length (2B + 1)n has to be reckoned. Consequently, to process each pixel62

(2M + 1)n(2B + 1)n squared differences have to be computed. Our aim is to63

heavily reduce this load by efficiently estimating d(xi, xj).64

2.2 Speedup methods for Nonlocal Means65

Different efforts have been reported in the literature to reduce the complexity66

of NLM. A relevant work in this sense is [19], which propose to combine several67

acceleration techniques, mainly:68

• Voxel preselection. Instead of computing the weights in eq. (2) for all xj ∈69

Ωi, those pixels too dissimilar to xi are assigned a weight 0 a priori. The70

local mean and variance at each xj are precomputed, and comparing them71

with those at xi a decision may be taken on wether to discard xj for the72

WA or not.73

• Block-wise implementation: the image is divided into overlapping blocks74

which are NLM-like denoised, and then the pixels are cleaned depending on75

the blocks they belong to. This technique is compatible with voxel prese-76

lection and also with our own approach, so we can consider it as a further77

improvement (although it results in a worsening of the filtering accuracy).78

The idea of voxel preselection is not unique in [19], and has been thoroughly79

explored by some other authors in different ways. In [20] all vectors u(Ni)80
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across the image are arranged into one single matrix, and Singular Value De-81

composition (SVD) is used to find an optimal base to represent vectors u(Ni).82

By keeping only those coefficients corresponding to the largest Singular Values83

(SV), it is possible to obtain representations of the patches with increasing84

accuracy, and to progressively discard dissimilar pixels much like in [19].85

A very similar technique is proposed in [21], taking into account not only86

the local mean and variance but also a set of features related to directional87

derivatives of the image and other features. Like in the previous cases, the88

preselection criterion is not obviously related to the actual distance d(xi, xj)89

between the pixels. To overcome this limitation, it is suggested in [18] to90

build a cluster tree to hierarchically find similar patches based on the distance91

d(xi, xj), thus keeping the statistical meaning of NLM. Unlike the present92

paper, this work deals with textured images.93

To this point, we have only reviewed proposals exclusively based on preselec-94

tion. An important limitation of this methodology is that the acceleration is95

only achieved for those voxels which are excluded from the WA, but the heavy96

computation of d(xi, xj) is still required for the remaining ones. This way, the97

acceleration strongly depends on the peculiarities of each image and the input98

SNR, yielding unpredictable speedups which might be only marginal.99

The aim in this paper is precisely to obtain a net speedup for all voxels inside

Ωi. Although still quite different, the work in [12] is related to ours in this

sense: distances d(xi, xj) can be estimated instead of explicitly computed,

recognizing that the distance d(xi, xj) in eq. (2) may be seen as a sample

estimate of the expected value of the quadratic difference between the pixels:

E{(ui − uj)
2} = (E{ui} − E{uj})2 + Var{ui}+ Var{uj}+ Cov{ui, uj}, (3)
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where each term can be replaced by its local sample mean. The problem100

with this solution is that it does not account for structural similarity between101

patches, since the simple computation of local statistics does not suffice to102

describe, for example, image contours. Hence, it highly differs from the original103

conception of NLM. The same problem is found in SVD approaches [20,22]:104

since singular vectors are computed globally, the base used cannot properly105

describe the similarity between local structures.106

A more recent approach aims to estimate the distances d(xi, xj) based on107

Principal Component Analysis (PCA) of Ni and Nj [23]: only a small subset108

of principal components describing the patches are compared. However, PCA109

is carried out over the entire image, so the same weakness when describing110

local structures arises.111

Finally, all the works previously introduced, except for [18], share a common112

limitation: the distance d(xi, xj) is replaced with a difference between features113

(local statistics or features, SVD or PCA vectors) which is not trivially re-114

lated to E{d(xi, xj)}. This pitfall compels to heuristically determine h2, thus115

compromising the optimality of NLM. Regarding [18], it is still based on pre-116

selection, with its inherent limitations. Yet, this work is intended for textured117

images, which are of less interest for the medical imaging community.118

3 Methods119

We aim to avoid the state of the art limitations described in the previous120

paragraphs using the following methodology:121

(1) The features used describe the local structure of non-textured patches,122
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maintaining the original NLM formulation in [4].123

(2) We reduce the computation of d(xi, xj) to a small subset of features for124

all pixels xj ∈ Ωi, always obtaining a net (and predictable) speedup.125

(3) The statistics of the distance in the features space are easily related to126

those of d(xi, xj), so that the statistical characterization of patches is also127

conserved allowing to fix the noise parameter h2 straightforward.128

Additionally, our proposal is also compatible with voxel preselection and block-129

wise implementations (though the latter are not discussed in the paper). Each130

of these issues is respectively addressed in the next subsections.131

3.1 Polynomial representation of comparison patches132

To describe the image with a small number of features, we model it locally

(inside the patch Ni) as an (hyper)surface of the form (for 2-D images):

u(sj, tj) ' c0 + cssj + cttj +
1

2
csss

2
j +

1

2
cttt

2
j + cstsjtj + . . . , (4)

where (sj, tj) is the offset of pixel xj ∈ Ni with respect to xi. In eq. (4) c0

is related to the local mean value of u(xi, yi); cs and ct to the local variance;

css, ctt, and cst to the third order moment, and so on. Instead of the global

truncated SVD in [20] or the global PCA in [23], we use a truncated local

Taylor series expansion. The features c describe the local structural properties

of the image, such as its mean gray level (c0) or its gradient (cs, ct), related to

image contours. To robustly extract these features, we use Least Squares (LS).

In case the series in eq. (4) is truncated to degree 2, the problem statement
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is: 

1 s1 t1
1
2
s2

1
1
2
t21 s1t1

1 s2 t2
1
2
s2

2
1
2
t22 s2t2

...
...

...
...

...
...

1 sN tN
1
2
s2

N
1
2
t2N sN tN





c0

cs

ct

css

ctt

cst



'



u(s1, t1)

u(s2, t2)

...

u(sN , tN)


⇔ X · c ' u, (5)

where N is the number of pixels inside the patch, arranged in the vector

u = [u(s1, t1), . . . , u(sN , tN)]T . The LS matrix X contains only the relative

positions (offsets) of the pixels in the neighborhood, and hence it is the same

for all patches. The vector c = [c0, . . . , cst]
T can be computed in closed form:

c = (XT X)−1XT u. (6)

Eq. (6) can be explicitly evaluated for orders 0, 1, and 2 for the standard case

of square, symmetric patches, yielding, for order 0:

c0 = u, (7)

where u is the sample mean of u: u =
∑N

i=1 u(si, ti)/N . For order 1:

c0 = u; cs =
s · u
s2

; ct =
t · u
t2

(8)

Finally, for order 2:133

134

c0 =
(s2t2

2 − s4 t4)u+ (s2 t4 − s2t2 t2)s2u+ (s4 t2 − s2t2 s2)t2u

(s4 − s2t2)(2s22 − s2t2 − s4)
;

cs =
s · u
s2

; ct =
t · u
t2

; cst =
s · t · u
s2t2

;

css =
(s2 t4 − s2t2 t2)u+ (t2

2 − t4)s2u+ (s2t2 − s2 t2)t2u

(s4 − s2t2)(2s22 − s2t2 − s4)
;

ctt =
(t2 s4 − s2t2 s2)u+ (s22 − s4)t2u+ (s2t2 − s2 t2)s2u

(s4 − s2t2)(2s22 − s2t2 − s4)
; (9)
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Note that all terms in the previous equations can be precomputed except for135

sptqu, with p, q = 0, 1, 2. These terms are computed in an efficient way as136

separable convolutions, so the overload due to their calculation is negligible.137

For truncation order 1 (resp. 2), it is only necessary to compute 3 (resp. 6)138

separable convolutions. For 3-D, this number grows to 4 (resp. 10).139

3.2 Approximation of patch distances140

Our aim is to estimate patch distances d(xi, xj) as distances in the features

space, d̃(xi, xj). To that end, we compute the differences between the LS-

fitted surfaces, instead of the original pixels themselves. The interpolated patch

surrounding xi, ũi, can be written in terms of the coefficients ci obtained from

eq. (6) for u(Ni):

ũi = X · ci, (10)

and the MSD between the interpolated surfaces reads:

d̃(xi, xj) =
1

N
(ũi − ũj)

T (ũi − ũj) =
1

N
(ci − cj)

T XT X(ci − cj). (11)

For order 1, XT X reduces to a very simple diagonal matrix (note that s =

t = st = 0), and hence:

d̃(xi, xj) = (c0i − c0j)
2 + (csi − csj)

2s2 + (cti − ctj)2t2, (12)

so the computation of the norm of a (2b+ 1)2 × 1 vector in eq. (2) is reduced141

to the computation of the norm of a 3 × 1 vector. Since this computation is142

the slowest part of NLM, the overall speedup is nearly (2b+ 1)2/3. For order143

2, eq. (12) becomes more complicated, but the advantage is still notable.144
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3.3 Statistical characterization of approximated patch distances145

As stated before, we need to compute E{d̃(xi, xj)} related to E{d(xi, xj)}

to properly fix h2 in eq. (2). Intuitively, the LS fitting in eq. (5) eliminates

degrees of freedom in the computation of patch distances. It seems logical to

think these distances will be smaller, and so is the value of h2. This issue is not

properly addressed in [19,20], where the preselection threshold is heuristically

selected, or in [12,23] either. Thus, we aim to compute:

E{d̃(xi, xj)} =
1

N
E
{

(ci − cj)
T XT X(ci − cj)

}
=

1

N
tr
(
E{XddT XT}

)
,

(13)

where d = ci − cj and tr(A) is the trace of A. From eq. (6), it follows:146

147

E{d̃(xi, xj)}=N−1tr
(
E{X

(
(XT X)−1XT w

) (
(XT X)−1XT w

)T
XT}

)
= N−1tr

(
X(XT X)−1XTE{wwT}X(XT X)−1XT

)
= N−1tr

(
X(XT X)−1XT (E{d(xi, xj)}IM) X(XT X)−1XT

)
= N−1tr

(
X(XT X)−1XT

)
· E{d(xi, xj)} =

K

N
· E{d(xi, xj)}, (14)

where w = ui−uj and we have assumed that all pixels are uncorrelated. From

eq. (5), it is easy to check that K = tr
(
X(XT X)−1XT

)
exactly matches the

number η of coefficients c describing the surface in eq. (4). Hence, the meaning

of eq. (14) is that the effective value of h2 has to be reduced to:

h2
eff =

η

N
h2. (15)

As a final remark, it has been observed in [7] that the computation of d̃(xi, xi)148

will always yield 0, overweighting the central pixel xi ∈ Ni. Instead, we fix:149

d̃(xi, xi)
∆
= E{d̃(xi, xj)} to avoid such bias.150
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3.4 Weighted distance functions151

It is a common practice to compute weighted patch distances d(xi, xj), as

already suggested in [4]. The quadratic differences between each pair of corre-

sponding pixels are pondered depending on its physical distance to the center

of the patch Ni:

d(xi, xj) = (ui − uj)
T R(ui − uj), (16)

where R is a diagonal matrix whose entries correspond to the n-dimensional

kernel used to ponder the distances. Interestingly, this strategy nicely fits in

our formalism: it is trivial to show that the expressions given in eqs. (7), (8),

and (9) for the coefficients c remain exactly the same. The only difference relies

on the way local averages are computed, taking into account the weighting

kernel; for example:

u =
∑

xj∈Ni

ρju(xj) = 1T Ru;
∑

xj∈Ni

ρj = 1, (17)

where 1 is an N × 1 vector of all ones and ρj is the value of the multivariate152

kernel at each location xj ∈ Ni. If the kernel is separable, all local averages can153

be computed as separable convolutions. Of course, particularizing the kernel154

to the case ρj = 1/N,∀j yields the unweighted patch distance.155

Obviously, this calculation affects the statistical characterization of distances.

A similar development to that in eq. (14) proves:

E{d̃(xi, xj)} = tr
(
RX(XT X)−1XT

)
· E{d(xi, xj)}. (18)

Therefore, the effective value of h has to be:

h2
eff = tr

(
RX(XT X)−1XT

)
· h2. (19)
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Although this expression is not so simple as eq. (15), its value can be precom-156

puted, and our model does not suffer any substantial modification.157

3.5 Hierarchical preselection based on patch distances158

Another advantage of our method is that it is compatible with a hierarchical159

preselection strategy similar to [18]; indeed, it is also based on true patch160

distances, with the advantage this implies. Suppose we establish a threshold161

µ the distance d(xi, xj) has to lay within for xj to be considered in the WA.162

We proceed as follows:163

(1) If d̃0(xi, xj) = (c0i − c0j)
2 > µ · h2

eff,0, the voxel is discarded: the selection164

is based on the estimated distance d̃0 and the effective parameter h2
eff,0165

for the Taylor series of order 0. In case the test is not passed, it has been166

necessary to compute only one difference. If the voxel is not discarded:167

(2) The test is repeated for order 1, and the voxel is discarded if d̃1(xi, xj) >168

µ · h2
eff,1. Besides, d̃1 can be easily computed from d̃0 using eq. (12).169

(3) If higher orders are considered, the test can be repeated with a threshold170

µ · h2
eff,l. At each step, we have actual estimates d̃l(xi, xj) of d(xi, xj);171

in case the voxel is not discarded in the final level of the hierarchy, the172

estimated distance to calculate the weight has been computed “for free”.173

3.6 About the computation of exponential weights174

The calculation of exponentials is a time consuming task even with modern

hardware. We have found that a rational approximation to the negative ex-

ponential in eq. (2) can achieve a non-negligible speedup (a constant factor

13



nearly 1.3) with virtually identical results. In practice, we use:

exp
(
−t2

)
'



1

1 + t2
2− t2

2
+

1

(1 + t2)2

t2

2
, t2 < 1 +

√
3;

0, otherwise.

(20)

3.7 Summary175

Our methodology can be outlined as follows:176

(1) The local features c in eqs. (7), (8), or (9) are precomputed calculating177

local averages as separable convolutions like eq. (17). These features are178

stored in contiguous memory locations for each pixel.179

(2) For each xj ∈ Ωi, the differences in the features space are sequentially180

compared with the preselection threshold for each truncation order.181

(3) In case the pixel passes all preselection tests, the distance in the features182

space is normalized using the effective h2 value of eq. (19).183

(4) Accordingly, the WA coefficient is computed using eq. (20) and used to184

update the sum of eq. (1).185
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4 Experimental results and discussion186

4.1 Setting-up of the experiments187

Like many other previous works, we use the realistic MRI phantom described

in [24] as a ground truth 1 . It is a 181×217×181 3-D data-set 2 with 1mm3 res-

olution simulating a noise free T1-MRI volume. To simulate a realistic MRI,

this phantom is contaminated with Rician noise of desired SNR; from the

noise-free image v(xi), the noisy image is obtained as:

u(xi) = |(v(xi) + ηc(xi)) + jηs(xi)| , (21)

where ηc,s(xi) are uncorrelated Gaussian processes with variance σ2. To remove

the bias induced by Rician noise, we use the approach suggested in [11,12].

The squared value of u(xi) is estimated using eq. (1), so that NLM becomes:

û(xi) =

max

 ∑
xj∈Ωi

w(xi, xj)u
2(xj)− 2σ2, 0


1/2

. (22)

This methodology is well accepted and has been tested in a number of recent188

works [8–10]. Like in [7], we compute weighted patch distances by introducing189

a kernel R corresponding to a separable Gaussian with isotropic variance 1.190

Finally, we keep the truncation order of eq. (4) equal to 1, since using order191

0 produces an excessive over-blurring (see Fig. 1). On the other hand, order 2192

approximations do not carry on a systematic improvement of the results, and193

1 Available online: http://mouldy.bic.mni.mcgill.ca/brainweb/.
2 Although the above derivations have been shown for the 2-D case to avoid an

excessively verbose typesetting, note the extension to 3-D is done in the obvious

way just by adding the corresponding terms in the ‘z’ coordinate.
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they unfruitfully increase computation times.194

[Fig. 1 about here.]195

4.2 Algorithms compared196

At the first stage, we extensively compare three variants of NLM in terms of197

their filtering performance and parameter sensitivity 3 :198

(1) Our own implementation of the original NLM as described in [4]. To199

achieve a fair comparison, we have adapted it to Rician noise (see above)200

and used eq. (20) to compute the weights. This is our standard for com-201

parison in the first set of experiments, and will be referred to as NLM.202

(2) The method proposed in this paper without hierarchical preselection. It203

will be named PFNLM after “Polynomial-Fit” NLM.204

(3) The method proposed in this paper with preselection threshold µ = 1205

(this value has been empirically fixed), namely PFNLM-1.0.206

4.3 Quality measures207

The outcome produced by the filter in each case is compared to the noise-free208

ground-truth using three different similarity measures:209

(1) The Root Mean Squared Error (RMSE) between the images.210

(2) The Structural Similarity Index (SSIM) described in [25]. As opposed to211

the RMSE, this index accounts for the similarity between image struc-212

tures and not between grey levels. It is bounded between 0 (worst quality)213

3 Source code available at http://www.lpi.tel.uva.es/~atriveg/nlm.tar.gz.
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and 1 (identical to ground-truth).214

(3) The Quality Index based on Local Variance (QILV) [26], which is more215

sensitive to the blurring of image edges. It is bounded between 0 (worst216

quality) and 1 (identical to ground-truth).217

While RMSE and SSIM describe how well noise is removed, QILV describes218

how well structures are preserved, providing complimentary information.219

4.4 Choosing the optimal parameters220

[Fig. 2 about here.]221

The first parameter to set is h (note that once h is fixed for NLM the effective222

heff for PFNLM is immediately obtained via eq. (19)). Values ranging from 1.0σ223

to 1.2σ are proposed in [7], and for T1 images h = 1.2σ is suggested. However,224

we have empirically tested (see Fig. 2) that h = σ is more appropriate. We225

conjecture this difference is due to the alternative way Rician bias correction226

is accomplished in [7].227

As expected, the original NLM is not able to properly remove the noise for too228

small values of h2. This translates in Fig. 2 in worse values of both RMSE and229

SSIM in the left column (remember these indices measure how well noise is re-230

moved). If we increase h2, NLM shows a better behavior and both RMSE and231

SSIM are improved. However, this parameter cannot be arbitrarily increased,232

as illustrated in the last row of Fig. 2 for the QILV index (which accounts for233

structures/edges preservation): if h2 is increased to 1.2σ2, the QILV index is234

clearly worsened for NLM. As a summary, we may conclude that h2 = σ2 (i.e.235

β = 1) is an adequate trade-off between noise removal and edge preservation,236
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at least for the kind of images under consideration. If we fix our attention in237

the optimal case β = 1, we can argue the three approaches produce a similar238

blurring of structures (a similar QILV index) but PFNLM produces cleaner239

images in terms of a smaller RMSE or higher SSIM. Note that PFNLM-1.0240

does not seem to carry on any particular advantage, although the correspond-241

ing QILV curve is slightly above those of NLM and PFNLM indicating that it242

could be preferable for edge preservation. Comparing again the behavior for243

different h2, PFNLM and PFNLM-1.0 seem to be more robust to the election244

of h2, which is an important advantage in practice: small deviations in the245

estimation of σ2 (note that this parameter is not known in general) will not246

drive to an important deterioration of the output of our filter.247

[Fig. 3 about here.]248

The remaining parameters to set are the radius M of Ωi and the radius B249

of Ni, Fig. 3 showing representative results to this respect. The conclusions250

drawn from the three quality indices are similar: increasing M improves den-251

oising until M = 5 is reached and only a marginal advantage is expected.252

Note, however, that the QILV measure is decreased (i.e. the structural infor-253

mation is partially blurred) in high-SNR scenarios for PFNLM with M ≥ 3,254

although RMSE and SSIM are still amended. With regard to the radius of255

the comparison patch, using B > 1 notably worsens the output quality (ex-256

cept for NLM with input RMSE of 25); since the computational complexity257

increases as (2B + 1)n, it seems reasonable to choose M = 5 and B = 1 as258

optimal parameters (as has been done in all our experiments, including those259

of Fig. 2). It is worth noting this conclusion is in complete agreement with the260

results previously reported independently in [7] and [19].261
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4.5 Filtering performance for different powers of noise262

Figs. 2 and 3 already suggest that PFNLM without preselection compares263

favorably to the other algorithms. For the optimal parameters, the meaning264

of Fig. 2 (for QILV) is that the three algorithms produce a similar blurring265

(at the sight of Fig. 1, the smoothing seems negligible). With regard to noise266

removal, Fig. 3 suggests that PFNLM outperforms the original NLM unless a267

very high SNR is considered, in which case a certain over-blurring may arise.268

On the other hand, the hierarchical preselection slightly worsens the results269

with respect to PFNLM, although it seems to palliate to some extent the270

blurring for very high SNR. Fixing our attention in Fig. 2 (center), it seems271

clear that PFNLM is more effective for noise removal than the original NLM272

(with the same blurring) for practically all the SNR range. In the next sections273

we provide some representative examples in this sense.274

4.6 More on the filtering performance with different NLM approaches275

In this section we aim giving some additional insights into the numerical results276

presented above. For the sake of completeness, we compare in what follows277

three additional techniques to sum up to those in section 4.2, which, following278

the discussion in section 2.2, are the most closely related to our own:279

• The fast NLM technique described in [19] for MRI denoising 4 , with the pa-280

rameters suggested by the authors (note they agree with those in section 4.4,281

so the comparison is fair). We have not used the block-wise implementation,282

since it is known to worsen the filtering accuracy [19].283

4 The method can be tested online: https://www.irisa.fr/visages/benchmarks.
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• The wavelet sub-band denoising NLM in [15]. This scheme 5 is mostly based284

on the previous one, but wavelet analysis is used to improve the perfor-285

mance. Though an adaptive implementation to cope with parallel acquisi-286

tion techniques is described in [8], we have used the non-adaptive version287

since such kind of images are out of the scope of the present paper.288

• The NLM implementation for textured images in [18] 6 . In this case we can-289

not attain a fair comparison in terms of performance for two main reasons:290

(1) The software is not designed for Rician noise, and we cannot adapt it291

using eq. (22) since the source code is not available.292

(2) The binaries provided are only for a 2-D case, which will clearly bias the293

results in favor of the remaining approaches compared.294

For all these methods, illustrative examples are shown in Fig. 4.295

[Fig. 4 about here.]296

Comparing the original NLM and our novel PFNLM, it is clear that the nu-297

merical differences reported translate into a very significant melioration of the298

visual quality (see zoomed regions). As expected, the method proposed in [18]299

yields the worst results, since it is not intended to work with 3-D MRI images.300

With regard to the method in [19], it seems to provide a better performance301

than the original NLM (as already stated by the authors therein), but our ap-302

proach still outperforms it: for RMSE=20 the difference is quite subtle, but it303

is still visible that the edges are better preserved with our PFNLM (please, see304

the electronic version of this manuscript). For input RMSE=35, the meliora-305

5 Code available: http://personales.upv.es/jmanjon/denoising/arnlm.html.
6 http://www.cs.berkeley.edu/~brox/resources/nlmeans_brox_

tip08Linux64.zip
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tion with PFNLM is more evident: the structures of interest become enhanced306

with our PFNLM, while the background noise is barely noticeable; with the307

approach in [19], on the contrary, the structure is less clearly visible and mixed308

up with a granulated background. Finally, the wavelet method in [8] provides309

qualitative results very similar to [19]. For input RMSE=35 their visual qual-310

ity is virtually identical, while for RMSE=20 the wavelet method seems to311

preserve the edges slightly better than [19]. Nonetheless, it seems to artifi-312

cially enlarge the dark regions when compared to [19] and our PFNLM (see313

the rightmost part of the zoomed region).314

To conclude this analysis, Table 1 shows the corresponding quality indices315

for the algorithms compared in Fig. 4; according to our comments above,316

the QILV index for our PFNLM is higher than for [19], meaning the former317

produces less blurring. The wavelet method [8] is able to improve the RMSE of318

the output, even outperforming PFNLM for input RMSE=20. However, and319

according to the observation in the previous paragraph, the QILV index is320

worse than for PFNLM: while wavelet denoising is able to better preserve the321

grey levels of the image, the advantage of our method when it comes to the322

subject of structure preservation is still clear, both qualitatively (Fig. 4) and323

quantitatively (Table 1). For low SNR, the novel PFNLM outperforms it for324

all indices. As a final remark, we want to stress that the outcomes obtained for325

low SNR are virtually identical (except for a certain difference in the output326

RMSE) for both [19] and [8].327

[Table 1 about here.]328
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4.7 Speedup achieved by PFNLM329

[Fig. 5 about here.]330

In this section we study the computation times for each method. The three al-331

gorithms in section 4.2 have been identically coded in C++ with multi-thread332

based on the ITK libraries 7 [27], except for the specific parts of each one333

(eq. (20) is used in all cases). To avoid any influence of hardware limitations,334

we conducted our experiments in a 32 GB RAM, 16 Intel c© CPU machine335

running a CentOS Enterprise-class linux distribution. All additional processes336

other than those associated to common tasks of the system were suspended337

to perform the tests. The execution times we provide were measured with the338

time command, reporting:339

(1) The user time, i.e. the amount of CPU time (for all CPU) consumed by340

the user segment of the process (without considering system calls).341

(2) The real time, i.e. the actual duration of the process; if the computation342

is done in parallel by several CPU, it can be drastically reduced.343

The speedup in each case is computed as the time measured for the original344

NLM over the time measured for the algorithm being compared. The results345

are shown in Fig. 5. The speedup (user time) increases linearly with the radius346

of the search window, and for the optimum M = 5 it grows over one order of347

magnitude. As expected, voxel preselection achieves an additional acceleration,348

although it is not as important as in [19] since the actual computation of patch349

distances is less time consuming. If we now consider the real time, the speedup350

is even more important, reaching a factor 20. This behavior is easy to explain:351

7 http://www.itk.org.
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when multiple threads run in parallel, their execution may (and it does) take352

quite different times; when the last thread is running alone, most CPU are353

not used. Since NLM is slower, additional CPU remain unused longer, so it354

makes less use of multi-threading. The advantage of PFNLM-1.0 in this case355

is only noticeable for M = 4, 5, but these are the useful scenarios.356

The speedup achieved for M = 5 is over 10 even in the worst case. We es-357

timate the norm of a (2B + 1)3 = 27 components vector as the norm of a358

4 components vector, so the predicted speedup would be only 27/4 = 6.75.359

This additional acceleration can also be explained: as mentioned above, im-360

age features describing patches are always stored in contiguous locations, so361

accessing the memory is more efficient. With NLM, the pixels in the com-362

parison window will not be contiguous in memory, producing cache failures.363

This is an intrinsic problem of NLM and does not rely on our implementation.364

With less powerful computers (with smaller caches) this problem will be even365

accentuated, so that PFNLM should be especially advantageous.366

With respect to [19], we cannot attain a fair comparison since no binaries are367

provided for testing. As a guidance, the reported computation time for the368

whole volume is 43’12”, i.e. 10.5 times slower than our approach (4’6”). Taking369

into account that the acceleration with the block-wise implementation is 6.2 in370

the best case [19, Table IV], our approach would be at least 1.7 times faster;371

yet, it should be noted that block-wise NLM yields less accurate filtering372

outcomes, so the performance improvement of our method in that case would373

be even more important. When compared to the wavelet based approach [8]374

(source code is available), our implementation becomes 1.8 times faster375

without preselection (over 2 with preselection), similar to the value estimated376

for [19].377
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Finally, for [18], we have used a 2-D search window of 35 × 35 pixels, which378

implies roughly the same number of averages as our 3-D search window of379

11 × 11 × 11 voxels. The computation time for the whole volume is 14’30”,380

so in the worst case our method is still 3.5 times faster. Moreover, this381

comparison is rather conservative: when extending the 2-D algorithm to 3-D,382

the computation should take longer than the sum of the times for each 2-D383

slice; for example, we have neglected for [18] the overload due the computation384

of 3-D patch distances, so the speedup of our method compared to [18] will385

be actually more than 3.5 times.386

4.8 In vivo experiments387

The major strengths of our proposal show up in low SNR scenarios. An appli-388

cation of paramount importance in this sense is diffusion MRI: in this modality,389

the preferential directions of water diffusion are probed by means of strong390

sensitizing gradients in the magnetic field of the scanner. Such gradients trans-391

late in severe attenuations of the received T2 echoes for the same noise power,392

dramatically worsening the final SNR. To illustrate this situation, we have393

gathered a real diffusion data set scanned in a 1.5 Tesla GE Echospeed sys-394

tem, comprising six independent gradient directions with b = 700s/mm2. The395

diffusion tensor at each voxel is estimated as in [28]. Although nowadays proto-396

cols use a larger number of sensitizing gradients and fit the diffusion tensor in397

a more robust manner via LS [29], we deliberately chose this reduced set: oth-398

erwise, the extra regularization introduced by LS would hinder the differences399

in the actual performances of the filters compared.400

Fig. 6 shows an axial slice of the data-set, where it may be checked that the401
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power of noise is far larger than that in T1 or T2 volumes. This noise power402

has to be estimated in this case, for which we have used the method proposed403

in [30, eq. (12)] as a good trade-off between simplicity and performance. Re-404

markably, we obtain a very similar result , σ = 65, as that provided by the405

online tool that implements the method in [19]. As it was predictable from the406

above experiments, our PFNLM outperforms the other methods in terms of407

the visual quality achieved. Especially, the structures marked with arrows in408

the figure are better denoised, and their contours clearly enhanced compared409

to (b) and (d). Also, given the low SNR of this data-set, the results for [19]410

and [8] are visually identical and hence they are not duplicated.411

[Fig. 6 about here.]412

However, diffusion MRI are used directly not very often, and the most in-413

teresting information is provided after the diffusion tensor is estimated: its414

principal eigenvector can then be tracked to recover entire fiber bundles con-415

necting regions of interest in the brain. We have conducted a final experiment416

in this sense using 3-D Slicer 8 . The seeding points from which tracking is417

started have been manually placed in the cerebellar peduncle to obtain the418

results in Fig. 7.419

[Fig. 7 about here.]420

Apart from the evident noisy behavior of the fibers, due to the very reduced421

number of gradient directions, our PFNLM method yields the smoothest422

pathways. What is more important, the corresponding fiber bundles are also423

anatomically more meaningful: the curvature of the pyramidal tract is more424

8 http://http://www.slicer.org/
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correctly recovered after PFNLM denoising (1), while the integrity of the fiber425

bundles is also better preserved, so that most of them connect with the cortex426

region. Finally, the integrity and orientation of the middle cerebellar peduncle427

(2) is adequately conserved with PFNLM filtering (compare the number of428

fibers traced in each case).429

5 Conclusions430

Our NLM implementation is based on estimating the similarity between the431

pixels in a features space. Since these features are computed in a robust man-432

ner with LS, we are even able to outperform the conventional NLM for realistic433

SNR. The idea of using polynomial fitting has been already explored in [14],434

but in that work it is the search window Ωi which is modeled as a polynomial435

surface to generalize the WA of NLM to a higher order model (and hence436

the computational complexity is even increased). Therefore, the idea of mea-437

suring patch distances in the space of the Taylor series coefficients is a novel438

contribution in our paper.439

The speedup achieved by our method with standard parameters is at least440

one order of magnitude, and can be even higher if hierarchical preselection441

is implemented (although PFNLM-1.0 slightly worsens the filtering accuracy442

with respect to PFNLM, it is yet preferable to NLM for low SNR, see Fig. 3).443

In case the filter is run in a multiple CPU machine, the acceleration can reach444

a factor near 20 even without preselection. Voxel preselection techniques like445

that in [19] can achieve a speedup of at most 5 to 7 in the same conditions446

(i.e. with multi-threading), so the advantage of our technique remains clear.447

Moreover, combining our proposal with the block-wise implementation in [19]448
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(at the expense of worsening its accuracy), an acceleration rate over two orders449

of magnitude could be attained.450

With respect to the improvement in the filtering outcomes, our approach com-451

pares favorably to the original NLM for the specific case of MRI images. Al-452

though an extensive comparison with all the recently introduced methodolo-453

gies is not feasible due to the lack of available code, we have shown enlightening454

results for the advanced NLM techniques closest to our own work, i.e. [8], [18],455

and [19], that clearly suggest our proposal is certainly advantageous. Besides,456

we have issued open-sourced code of our methods, so further comparisons457

should be easy to perform with future research results.458

Finally, the potential of our method depends on the ability to describe image459

patches with its mean value and gradient. For textured images (such as pho-460

tographs), this first order approximation might not suffice, being necessary461

to consider order 2 or higher. Although a certain speedup is achieved in this462

case, it might be only marginal. In these scenarios the preselection technique463

proposed in [18] for textured images should be preferable. Note, however, that464

our approach is mainly oriented to MRI, which are inherently non-textured.465

The ability of PFNLM to deal with very noisy data is specially interesting466

for diffusion MRI, which typically exhibit a poor SNR; nevertheless, and as467

pointed out in [10], the proper denoising of diffusion data cannot be carried468

out as a simple channel by channel operation, but instead has to take into469

account the peculiarities of this kind of data. The inclusion of the diffusion470

model within our framework will be for sure an important future research line.471
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from the traditional NLM (d). 34
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well for the sake of comparison. 35

3 Output quality indices as a function of the radius of the search
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4 Central axial slice of the T1 phantom used in the synthetic
experiments, contaminated with Rician noise with input
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5 Speedup, with respect to the original NLM, achieved by
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6 An axial slice of the diffusion MRI volume acquired (an
arbitrary gradient direction is shown in (a)), together with
the NLM (b) and PFNLM (c) filtered versions of this same
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7 Fiber tracking obtained after estimating the diffusion tensor
from data filtered with (a) NLM, (b) PFNLM, (c) the
approach in [19] (that in [8] yields virtually identical results),
and (d) the approach in [18]. Seeding points have been placed
in the cerebellar peduncle. The fiber bundles have been colored
according to the fractional anisotropy (normalized variance of
the eigenvalues of the diffusion tensor) at each location. 40
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Fig. 1. Performance of different truncation orders: original noisy image (a), our
proposal with order 0 (b), with order 1 (c) -no improvement is achieved with order
2-, and original NLM (d). Order 0 truncation produces over-blurring and hence it
is not adequate (b), but the result for order 1 (c) is undistinguishable from the
traditional NLM (d).
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Fig. 2. Quality indices versus input RMSE for the three algorithms compared and
for: (left) h = 0.8σ; (center) h = 1.0σ; (right) h = 1.2σ. (Top) RMSE; (middle)
SSIM; (bottom) QILV. The indices corresponding to the noisy images are repre-
sented as well for the sake of comparison.
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Fig. 3. Output quality indices as a function of the radius of the search window (M)
for different radii of the comparison patch (B). Results are shown for a high SNR
scenario (top) and for low SNR (bottom).
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Fig. 4. Central axial slice of the T1 phantom used in the synthetic experiments,
contaminated with Rician noise with input RMSE of 35 (top) or 20 (botton). For
guidance, the original noisy image is shown together with the image filtered with:
the original NLM with Rician bias correction (1); our novel PFNLM method (2).
For the sake of comparison, we show also: the fast NLM method for MRI described
in [19] (3), the wavelet sub-band MRI denoising method in [8] (4), and the fast
NLM approach for textured images denoising in [18] (5).
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Fig. 5. Speedup, with respect to the original NLM, achieved by PFNLM and
PFNLM-1.0, for: (left) One single CPU; (right) A 16 core machine. The absolute
execution times are given for the optimal value M = 5 as a guidance.
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Fig. 6. An axial slice of the diffusion MRI volume acquired (an arbitrary gradient
direction is shown in (a)), together with the NLM (b) and PFNLM (c) filtered
versions of this same volume. The algorithms in [19] (that in [8] yields virtually
identical results) and [18] are respectively shown in (d) and (e) for the sake of
comparison.
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Fig. 7. Fiber tracking obtained after estimating the diffusion tensor from data fil-
tered with (a) NLM, (b) PFNLM, (c) the approach in [19] (that in [8] yields virtually
identical results), and (d) the approach in [18]. Seeding points have been placed in
the cerebellar peduncle. The fiber bundles have been colored according to the frac-
tional anisotropy (normalized variance of the eigenvalues of the diffusion tensor) at
each location.
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List of Tables

1 Performance indices obtained for the experiments shown in
Fig. 4. Regarding the values in italics for [18], the comparison
cannot be considered fair for the reasons discussed in the text. 42
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Table 1
Performance indices obtained for the experiments shown in Fig. 4. Regarding the
values in italics for [18], the comparison cannot be considered fair for the reasons
discussed in the text.
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